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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2421

A RAPID APPROXIMATE METHOD FOR DETERMINING VELOCITY DISTRIBUTION
ON IMPELLER BILADES OF CENTRIFUGAL COMPRESSORS

By John D. Stanitz and Vasily D. Prian

SUMMARY

A rapid approximate method of analysis was developed for both com-
pressibie and incompressible, nonviscous flow through radial- or mixed-
flow centrifugal compressors with arbitrary hub and shroud contours and
with arbitrary blade shape. The method of analysis is used to deter-
mine approximately the velocities everywhere along the blade surfaces,
but no information concerning the variation in velocity across the
passage between blades is given.

In eight numerical examples for two-dimensional flow, covering a
fairly wide range of flow rate, impeller-tip speed, number of blades,
and blade curvature, the velocity distribution along the blade surfaces
was obtained by the approximate method of analysis and compared with the
velocities obtained by relaxation methods. In all cases the agreement
between the approximate solutions and the relaxation solutions was
satisfactory except at the impeller tip where the velocities obtained
by the approximate method did not, in general, become equal on both
surfaces of the blade as required by the Joukowski condition.

INTRODUCTION

In impellers of centrifugal compressors, part of the viscous losses
and the phenomena of surge and choke are related to the velocity dis-
tribution on the blade surfaces. Viscous losses in impellers are
associated with the boundary layer along the flow surfaces. The growth
of this boundary layer depends on the velocity variation along the flow
surfaces just outside of the boundary layer. In particular, if the
velocity decelerates rapidly along the blade surfaces, the boundary
layer may separate causing large mixing losses. Also, if the velocity
at any point along the blade surface is sufficiently greater than the
local speed of sound, shock losses will result. The choke phenomenon
occurs when the average velocity between blades is sonic. This average
sonic velocity is characterized by local supersonic velocities along
portions of the suction surface of the blade. One possible cause of
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surge in centrifugal impellers is the formation of relative eddies on
the pressure surface of the blade (reference 1). These eddies are
characterized by negative velocities, opposed to the general flow
direction, along portions of the pressure surface. In order to analyze
the performance of centrifugal impellers it is therefore necessary to
determine the velocity distribution on impeller blades.

Several methods of analysis that can be used to determine the
variation in velocity along blades with finite spacing have been
developed for two-dimensional incompressible flow (references 2 to 5,
for example) and compressible flow (references 1 and 6). All these
methods require considerable labor and therefore are not convenient
tools for analyzing the performance of an arbitrary impeller design.

In this report a rapid approximate method developed at the NACA
Lewis laboratory is presented for both compressible and incompressible,
nonviscous, two-dimensional flow between blades with finite spacing in
radial- or mixed-flow centrifugal compressors with arbitrary hub and
shroud contours and with arbitrary blade shape. The method of analysis
can be used in connection with an axial-symmetry soluticn to determine
the velocities everywhere along the blade surfaces, but no information
concerning the variation in velocity across the passage between blades
is given.

Other approximate methods that are less rapid than the proposed
method for computing the velocity distribution on blade surfaces in
impellers of centrifugal pumps and compressors are given in refer-
ences 6 to 9. In the sections SIMPLIFIED ANALYSIS of refer-
ences 6 and 7 approximate methods are developed for computing the
theoretical distribution of velocity across the passage along normals
to the blade syrfaces. The methods are limited to straight or
logarithmic-spiral blade shapes on radial or conic surfaces of revolu-
tion and do not apply, because of assumptions, in regions near the
impeller tip and the impeller iniet. 1In reference 8 methods are
developed for computing the distribution of velocity across the pas-
sage between blades in the circumferential direction for incompressible
flow with arbitrary blade shapes and with arbitrary hub and shroud
contours. ThHe methods do not apply, because of assumptions, in regions
near the impeller tip and the impeller inlet. In reference 9 an
approximate method is developed for computing the theoretical velocity
distribution everywhere within the impeller. In this method the cor-
rections required for compressibility and for blade unloading at the
tip are somewhat more complicated than those presented herein.

THEORY OF METHOD

The method of analysis presented in this section determines the
velocity distribution along the profiles of blade elements on surfaces
of revolution.

2191
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Preliminary Considerations

Assumed nature of flow. - In this section certain preliminary
assumptions are made concerning the three-dimensional flow of an ideal
compressible fluid through an arbitrary impeller passage between blades
such as shown in figure 1. In general, the fluid is free to follow
whatever path the pressure and inertia forces require of it. If,
however, it is assumed that the number of blades in the impeller
approaches infinity, the space between blades approaches zero and the
path of the fluid is restricted to the curved, mean surface of the
blade. (The blades become very thin so that the two surfaces of each
blade approach a mean surface.) Under this assumption of axial
symmetry the fluid motion is reduced from a general three-dimensional
motion to a two-dimensional motion on the curved, mean blade surface.
The streamlines of this two-dimensional motion can be projected on the
meridional (axial-radial) plane, as shown in figure 2. Ruden (refer-
ence 10) has shown that, provided that the blades are not too widely
spaced, axial-symmetry solutions give a good picture of the mean flow
between blades.

For finite blade spacing, flow conditions vary between blades in
the circumferential direction about the axis of the impeller. In order
to investigate this blade-to-blade variation, it is assumed that the
motion of any fluid particle bounded by adjacent streamlines in the
meridional plane (fig. 2) is restricted to the annulus generated by
rotating these adjacent streamlines about the axis of the impeller.

If the adjacent streamlines are sufficiently close together, flow

‘conditions in the annulus can be considered uniform normsl to a mean

surface of revolution in the annmulus. Thus the fluid motion is reduced
to two-dimensional flow on the mean surface of revolution (fig. 3)
generated by rotating the center line between the adjacent streamlines
in the meridional plane (fig. 2) about the axis of the impeller.

Blade-to-blade solutions of this type may be obtained for every
mean surface of revolution generated by the center lines between
adjacent streamlines in the meridional plane. Therefore, flow condi-
tions can be determined throughout the passage between blades. The
resulting quasi three-dimensional solution is obtained by the combina-
tion of two types of two-dimensional solution, axial-symmetry solu-
tions in the meridional plane and blade-to-blade solutions on surfaces
of revolution. BSuch a combination of solutions prohibits the possi-
bility of a corkscrew path, which the fluid might follow in an exact
three-dimensional solution, but it can be expected to give a better
picture of the flow than does any two-dimensional solution alone.

The method of analysis Jjust described is accomplished in two
phases, axial-symmetry solution and blade-to-blade solutions. Only
the second phase, blade-to-blade solutions, will be considered in this



4 NACA TN 24z1

report. The shape and the distribution of meridional streamlines in the
axial~-radial plane are assumed to be known from an axial-symmetry
solution (reference 11, for example). Thus, for a blade-to-blade
solution in the annulus generated about the axis of the impeller by any
two adjacent meridional streamlines (fig. 2), the shape of the mean
surface of revolution (fig. 3) is known from tre shape of the center
line between the adjacent meridional streamlines, and the variation in
height of an elementary fluid particle (fig. 2) as it moves along the
mesn surface of revolution from the impeller inlet to the impeller tip
is known from the variation in spacing of the adjacent meridional
streamlines,

Coordinates, - The cylindrical coordinates R, 6, and Z are
shown in figure 3. (All symbols are defined in the appendix.) These
coordinates are dimensionless, the linear coordinates R and Z having
been dlvided by the impeller-tip radius rp. The coordinate system is
oriented with the Z-axis along the axis of the impeller, The coordi-
nates are fixed relative to the impeller, which rotates with the
angular velocity o 1in the positive direction (right-hand rule) about
the Z-axis, as shown in figure 3.

An infinitesimal distence dS in the direction’of flow (that is,
coineiding with the velocity vector) has components dR, Rd6, and dZz
(fig. 3). The projection of dS on the meridional plane is given by
dM in figure 3. The infinitesimal distances dS and dM help to
define two angles a and B where, from figure 3,

dR = dM sin a ‘ (1a)

dZ = dM cos a (1)
and

dM = dS cos B (2a)

Rd6 = dS sin B (2v)

The angle « (fig. 3) is determined by tangents to the center line,
between adjacent meridional streamlines, that generates the surface of
revolution. The angle B (fig. 3) is the flow direction on the sur-
face of revolution measured from a meridional line. From equation (2a)

=p =

1
oA
oo

because dS and dM are always positive and finite. From equa-
tions (la) and (1t),

0 ax<

A

2191
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because for impellers of centrifugal compressors dR and dZ will be
considered positive (or zero).

Fluid strip. - A fluid strip of infinitesimal width dM 1lies on
the surface of revolution and extends across the passage between blades
along a line of constant R. A developed view of the fluid strip is
shown in figure 4. The fluid strip has dimensions dM and BRAO where
the angular width of passage between blades A6 1is defined by

A = 0+-64 (3)

in which the subscripts d and t refer to the driving and trailing
faces of the blades, respectively (left and right walls of the channel
between blades in fig. 4). The height ratio H of the fluid strip is
defined as the ratio of the incremental height Ah (fig. 2) of the
fluid strip at radius R to the incremental height (Ah)T of the
fluid strip at R = 1.0. This height ratio is completely determined
along a mean surface of revolution by the spacing between the adjacent
streamlines in the meridional plane (fig. 2).

Velocity components. - The relative velocity @ on a surface of
revolution has components Qy and Q in the dM and d6 directions,

respectively, (fig. 3). These velocities are dimensionless, having
been divided by the absolute stagnation speed of sound Co, Uupstream of

impeller, where

coz = YgRTo (4)

in wvhich R is the gas constant, y 1is the ratio of specific heats,

T 1is the static (stream) temperature and where the subscript o refers
to stagnation conditions upstream of the impeller. The tip speed of
the impeller is likewise dimensionless and equal to the impeller-tip
Mach number My, which is defined by

Mthﬂ (5)

e}

Thus, the tangential velocity of the irpeller at any radius R is
equal to RMp and the absolute tangential velocity of the fluid is

equal to (RMp + Qg). From figure 3

R

I

Q cos B ' (6)
and

Q sin B (7)

&
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Thermodynamic relations. - From the general energy equation and
from the isentropic relation between temperature and density, the
density ratio p/po is related to the relative velocity Q by

1
- T
b&o ={1 + Lzl- [(RMT)Z-QZ-ZMT)\LJ}Y (8)

where the subscript U refers to conditions upstream of the impeller
and where A is the whirl ratio (absoclute moment of momentum divided

by rpe,) given by

A = R(BMp + Qg) (9)

Development of Method

Assumptions., - Before outlining the method of analysis it is con-
venient to discuss the major assumptions. Consider the fluid strip
in figure 4. Along the infinitesimal distances bounding the fluid
strip at the driving and trailing blade surfaces, the velocities may be
considered constant and equal to Q3 and Qt, respectively, and the
flow directions may be considered constant and equal to Bg and Byg.
Along the lines of constant R bounding the fluid strip in figure 4,
the velocity varies in some unknown manner from Q3 to Qt and the
flow direction varies from Bg to PBy. In this report it is assumed
that the average values of Q and B along lines of constant R may
be used to satisfy the conditions of continuity and absolute irrota-
tional motion. The average value of Q is assumed to be given by

_ Qg + Qg

Qg 5 (10)

and, for R< Ry, the average value of B is assumed tc be given by

Ba + Bt
Bav = — (11)
Also, for Ry S R=<1.0,

A + BR + CR2 (12)

sin Bgv

2191
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where A, B, and C are coefficients to be determined and where Ry
is the largest radius at which the fluid is considered to be perfectly
guided by the blades; that is, the radius at which the simplified
analyses given in references 6 and 7 break down. From figure 10 of
reference 7 the value of Ry for A6 equal to /10 and sin a
equal to 1.0 is about 0.8. For other values of A9 and sin o, the
value of Ry can be estimated from

1n Ry 1n 0.8 _ .
(A8) sin o x/10 ~ T 0.71 (13)

where a is the average value over the interval Rx < R < 1.0. Equa-
tion (13) is based upon an extension of the work in reference 1 where
for impellers with straight blades it is shown that the flow conditions
in one impeller can be correlated with the flow conditions in another

impeller at the same value of 1n R. . In reference 1, the
(A8) sin o

impeller-tip Mach number and the compressor flow rate were found to have
a negligible effect on the value of Ry.

Outline of theory. - Fluid strips such as shown in figure 4 exist
at all radii along the surface of revolution. From the assumptions of
this analysis there are three unknowns (Qd, Qy, and Qav) for each

fluid strip. These unknowns can be determined by the simultaneous
solution of equation (10) and the equations of continuity and zero
absolute circulation for flow across the fluid strip. Equations for
the distribution of velocity along the blade profile on a surface of
revolution will be developed in this report.

Zero absolute circulation. - In the absence of entropy gradients,
which result from shock, viscous dissipation, heat transfer, and so
forth, the absolute circulation around the fluid strip in figure 4 is
zero so that

(Q + RMr sin B)dco;LBd- (Q + RMT sin B)¢ E—JZMTt+
?a%q" [(RMT + Q9)ay RAB] M =0 (14)

vhere (RMr + Qg)zy 1is the average absolute tangential velocity and
where from trigonometric considerations of the velocity triangles
(fig. 5) Q + RMp sin B 1is the absolute velocity component along the
blade surface. From equations (7) and (14) and from the assumptions
that Q and B equal Qgy and Bav’ respectively, in the passage
between blades,
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Qa Qt

cos By " o8 By + RMp (tan Bg - tan By) +

=+ [(RMT + Qgy sin Bgy) RAS] =0 (15)

Finally, from equations (10) and (15)

cos Bq cos By {2 Qav_ Rép (tan By - tan Bg) +

% = cos By + cos By | cos By

d—dﬁ [(RMT + Qqy sin Bgy) R(Ae)]} (16)

and from equation (11)

Q4 = 2Qgv - (17)

If Qgy and Bzy are known, Q3 and @t can be determined from
equations (16) and (17).

Average velocity Qgv. - From continuity considerations of the flow
across the fluid strip in figure 4,

Aw = <po %}) (coyy) cos Bgy [(Ah)T H] (rqR) 40

fram which

— P
@y = Pav HR 06 (18)

- COS Bgy
po & (AB 5T
where the flow coefficient @ is defined by

1 Aw

= 19
P boeg (alg (19)

in which Aw 1s the incremental flow rate through the passage between
two blades on the surface of revolution and (Aa)p 1is the incremental
flow area (between two blades) normal to the direction of Qy at the
impeller tip

(02)p = rp(A8)qp(an)q (19a)

2/ 5/
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The flow rate per unit flow area at the impeller tip Aw/(Aa)p is
known so that the flow coefficient @ can be determined by equa-
tion (19). The density ratio pav/po is given by equation (8) with

Q e qual to Qav

1
Y-1

Therefore, the velocity Qgy can be determined by the simultaneous

solution of equations (18) and (20) provided that the average flow
direction Bav is known.

Average flow direction. - In the passage between blades the
average flow direction is assumed equal to the average blade direction
(equation (11)) except near the blade tip (Rx< R < 1.0) where

sin Byy is given by equation (12). The exact variation in By,
with R in the interval Ry< R <1.0 could be represented by an
infinite series. However, because the variation in sin B,, with R
will not, in general, contain an inflection point, a parabolic varia-
tion in sin Bgy with R has been assumed and only the first three
terms of the infinite series retained. The constants A, B, and C
in equation (12) are determined from:

(1)  (sin Bgy)x = A + BRy + CR,2

d sin Bav
2 ~————1} =B + 2CR
(2) < dR )x x

and
(3) (sin Bgy)p =A +B + C

so that

A = (sin Bgy)p - B - C

d si
B = C__EEE_E§X> - 2R4C (21)
dr X r

1 . . d sin Bgy
- - o 5]
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d sin By
whe i and ——r
re (sin Bgv)x ( m N

at Ry, and where (sin Bgy)p 1is determined from the slip factor w,
which is defined by (reference 6)

are known from the blade geametry

+ (Qqy sin Bayv)T
Mp

p=1

so that

Mr (u-1)

(sin Byy)p = NCOSI'S (22)

The slip factor u 1s assumed to be known, or can be estimated, as a
result of the work presented in references 1 and 7, for example.
(Further discussion on Rx and the slip factor u 1is given later in
this report.) The velocity (Qgy)T 1n equation (22) is obtained from

equations (18) and (20) with R and H equal to 1.0 and with

(cos Bgy)p replaced by 4/1 - (sin Bav)Tz where (sin Bgy)p 1s given
by equation (22):

{ _Y_z_ [(M‘I‘) "(Qav 2 ZAINT} ’J Mp (u- l)]

Equation (23) is solved for (Quy)p by trial and error. Therefore,
Bgy is determined as a function of R (or M) by equations (11), (12),
and (21). The velocities Qg, Qp, and Q,, are determined as func-

tions of M (or R) from equations (16), (17), and (18). (The last
term of equation (16) is determined from the slope of
(RMp + Qgy sin By,) R (A8) plotted against M.)

(23)

(Qav)T

APPLICATION OF METHOD

The following outline of the numerical procedure is given for the
general case of a mixed-flow impeller with arbitrary hub and shroud
contours in the meridional plane (fig. 2) and arbitrary blade shape
(curvature and thickness distribution) on surfaces of revolution. It
is assumed that the surfaces of revolution are known, that is have been
generated by the center lines between adjacent meridional streamlines

2191
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obtained from an axial symmetry solution (reference 11, for example) .
The following outline of the numerical procedure referd to any one of
these surfaces of revolution.

Specified conditions. - The following quantities are specified:

(1) Flow coefficient @ (defined by equation (19) in which

o, Cpr A4V, and (Aa)T are known quantities)

(2) Impeller-tip Mach number Mp (defined by equation (5))
(3) Whirl ratio Ay upstream of impeller (defined by equation (9))
(4) Ratio of specific heats 7t

(5) From the shape of the center line between adjacent meridional
streamlines that generate the surface of revolution,

R = R(M)
and
o = a(M)
where the distance M along a meridional line on the sur-
face of revolution is arbitrarily equal to zero at the impel-
ler tip and decreases toward the impeller inlet
(6) From the spacing of the adjacent meridional streamlines,
H = E(M)

Variation in sin Bgy. - The variation in sin B, with R near
the impeller tip (Rx< R < 1.0) is determined as follows:

(1) Compute the value of Ry by equation (13). If sin a varies
in the region Ry < R £1.0, as it generally does, the
average value of o« in this region is used in equation (13),
and because the average value of a varies with the value
of Ry, equation (13) must be solved by trial and error.
However, because the value of o does not generally vary
greatly in the region Ry< R < 1.0, a satisfactory value
of Ry could be obtained from equation (13) using the
average value of o obtained from an initially assumed
value of Ryg. Also, equation (13) was developed from
information (references 1 and 7) relating to blades that
are not designed to unload at the tip. If the blades
being considered were designed to unload at the tip, the
direction of the mean flow path near the impeller tip
would deviate less from the mean blade direction and the
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value of Rx would be somewhat greater than that given by
equation (13). The value of Ry is not especially criti-
cal and in these cases, with sufficient experience, it can
probably be estimated accurately enough from the radius at
which an assumed path of the meen streamline (sketched by
experience) deviates appreciably from the mean direction
of the blade profile on the surface of revolution.

(2) Estimate the value of p, or obtain values from references 1
and 7. The values of p given in references 1 and 7 were
obtained for blades that are not designed to unload at the
tip. If the blades being considered were designed to unload
at the tip, the direction of the mean flow path at the impel-
ler tip would deviate less from the mean blade direction
at the tip and the value of u would be somewhat greater
than that indicated in references 1 and 7; that is, (Bgy)p

would be more nearly equal to % (Bg + By)p. The value

of u, like the value of Ryx, is not especially critical
and in these cases it can probably be estimated accurately
enough from the assumed shape of a mean streamline (sketched
from experience) between blade-element profiles on the sur-
face of revolution.

(3) Compute (Qgy)T from equation (23) by trial and error.
(4) Compute (sin Byy)p from equation (22).
(5) Compute coefficients A, B, and C from equations (21).

(6) Compute sin By, over the interval Ry, < R<1.0 by equa-
tion (12).

The variation in By, for R Iless than Ry 1is given by equa-
tion (11). This equation is assumed to be valid downstream to the
impeller inlet., If the angle of attack at the impeller inlet is zero,
the assumption is probably good. If the angle of attack is small, the
error involved is probably small and could be partly corrected by
estimating the path of the mean streamline between blades in this
region. For large angles of attack, the stagnation point on the blade
surface may exist well inside the impeller passage and the ideal flow
is reversed along the blade csurface downstream of this point. Under
these conditions, the method of analysis does not apply near the
impeller inlet but because of the high blade solidity it does apply
elsewhere in the impeller.

2191
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Average velocity Qgy. - The average velocity Qgy at each value
of M (or R) is determined by equation (18) in which pav/po is given
by equation (20). Because pav/po also contains Qgys the simultan-
eous solution of equations (13) and (20) must be by trial and error.

A suggested procedure is first to compute pav/po assuming that Qg
in equation (20) is zero. This value of pav/pO is then used to com-
pute Qav by equation (18). The process is repeated each time using

the new value of Qg to compute pav/po until the value of Qg
converges.

Velocities on blade surfaces, Qg and Qt' - The velocities on the
blade surfaces at each value of M (or R) are determined by equa-
tions (18) and (17). The last term in equation (16) is obtained from
the slope of (RMp + Qg sin Bav) R (A9) plotted against M.

Finally, the static (stream) pressure p corresponding to the
relative velocity Q at any radius R is given by

e} (e}

2 - <g_>* = {1 e [(%)Z-QZ-%AU]}% (24)

NUMERICAL EXAMFLES

The approximate analysis method developed in this report is
applied to eight examples for which relaxation solutions of the exact
differential equation for two-dimensional compressivle flow in impel-
lers of centrifugal compressors are given in references 1 and 7.
Although these examples are for radial- or coniec-flow surfaces and not
for arbitrary surfaces of revolution, they cover a fairly wide range
of design and operating variables so that a comparison of the veloci-
ties (on the blade surfaces) obtained by the relaxation solutions and
by the approximate analysis method should serve as a check on the
validity of the approximate method.

Types of impeller. - The eight numerical examples are for two-
dimensional radial-flow im =1lers for which o is equal to 90° and the
surfaces of revolution are .lat planes normal to the axes of the
impellers. The impellers (fig. 6) contain a finite number of thin
straight (B3 = By = 0) or logarithmic-spiral (Bg = By = constant)

blades, and the flow area normal to the direction of @ 1is constant
so that HR equals 1.0. Only the critical flow region toward the tip
of the impeller was investigated (0.70< R < 1.0). The diffuser vanes
(if any) and the inducer vanes were assumed to be far enough removed
not to affect the flow in this region.
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Design and operating variables. - The following design and opera-
ting variables were specified for the eight examples:

Example | @ |Mp JaY:) tan B Fluid W
(a) 0.5 |1.5 |2x/30 ) Compressible |0.934
(b) .7 (1.5 [2x/30| © Compressible .937
(c) .9 |1.5 |2xf30| O Compressible .938
(a) .5 2.0 |2n/30 | © Compressible .935
(e) .5 |1.5 |2xf20| © Compressible .899
() .5 |1.5 |2x/20 | -0.5 | Compressible .834
(g) .5 |1.5 |2n/20 | -1.0 | Compressible | .768
(n) .5 |1.5 |2/20 | O |Incompressible | .892

The whirl ratio upstream of the impeller AU was zero and for the com-
pressible fluid the ratio of specific heats Yy was 1l.4. The value

of the slip factor u given in the table was obtained from the relaxa-
tion solutions and was also used to compute (sin Bgy)p in equa-

tion (22). For the incompressible example, the speed of sound c¢g con-
tained in the definitions of Q, ®, and Mp 1s a fictitious quantity

(constant) considered equal to the upstream stagnation speed of sound
of the compressible-flow examples with which the incompressible-flow
example is compared.

Results. - The results of the comparison between the relaxation
solutions and the approximate method of analysis are shown in figure 7
for the eight examples. The velocities Qg &and Qi are plotted

against R for the relaxation solutions and for the approximate solu-~
tions. The average velocity Qg, used in the approximate method of

analysis to cbtain Qg and Qi 1is also plotted.

The effect of increasing the flow rate (flow coefficient) on the
agreement between the relaxation solution and the approximate solution
is shown in figures 7(a) to 7(c). The agreement appears equally good
for all flow rates. In view of the relative simplicity of the approxi-
mate method of analysis, the agreement is considered entirely satis-
factory everywhere except in the immediate vicinity of the impeller tip
where the results of the approximate method of analysis do not follow
the rapid unloading of the blades. This rapid unloading is-characteris-
tic of blades that are not designed to unload at the tip. If the
blades were designed to unload, the agreement between relaxation solu-
tions and approximate solutions should be better. In any event the
disagreement is serious only over the last 2 percent of impeller-tip
radius. The failure to unload at the impeller tip will be observed in
most of the remaining solutions.

2191
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The following figure comparisons indicate: figures 7(a) and 7(4d),
the effect of increasing impeller-tip Mach number; figures 7(a)
and 7(e), the effect of increasing angular width of passage between
blades (A0); figures 7(e), 7(f), and 7(g), the effect of larger
negative blade angles PB; and figures 7(e) and 7(h), the effect of
campressibility. In figure 7(h), the peculiar humps in the velocity
distribution obtained by the approximate method of analysis indicates
that for incompressible Tlow the blades start to unload at a lower
value for R, than that given by equation (13).

In view of the relative simplicity of this approximaste, but rapid,
method of analysis, the agreement between the relaxation solutions and
the approximate solutions is considered good in all cases investigated;
that is, over fairly wide ranges of flow rate, impeller-tip speed,
blade curvature, and number of blades.

SUMMARY OF RESULTS

A rapid approximate method of analysis was developed for deter-
mining the velocity distribution on impeller blades of centrifugal
compressors. In eight numerical examples the velocities obtained by
the approximate method of analysis were compared with the more nearly
correct values obtained by relaxation methods. In all cases, that is,
over a fairly wide range of flow rate, impeller-tip speed, blade
curvature, and number of blades, the agreement between velocities
obtained by the approximate method of analysis and by relaxation
methods was considered good.

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, April 27, 1951.
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APPENDIX - SYMBOLS

The following symbols are used in this report:

A,B,C

el

T

coefficients defined by equation (21)
stagnation speed of sound upstream of impeller, equation (4)
acceleration due to gravity

height ratio of fluid strip normal to surface of revolution,
Ah/(Ab)g

distance along meridional line on surface of revolution
(dimensionless, expressed as ratio of impeller tip radius rT)
(fig. 3)

impeller tip Mach number, equation (5)

static (stream) pressure

relative velocity on surface of revolution (dimensionless,
expressed in units of the stagnation speed of sound upstream
of impeller c,) (fig. 3)

cylindrical coordinate (dimensionless, expressed as ratio of
impeller-tip radius rgp) (fig. 3)

impeller-tip radius

distance along streamline on surface of revolution (dimension-
less, expressed as ratio of impeller-tip radius rT) (fig. 3)

static (stream) temperature

cylindrical coordinate (dimemsionless, expressed as ratio of
impeller-tip radius rT) (fig. 3)

slope of surface of revolution in direction of Qy, equa-
tions (la) and (1b) (fig. 3)

flow direction on surface of revolution, equations (2a) and (2v),
(fig. 3)

ratio of specific heats

(Aa)T incremental flow area between two blades and normal to the

direction of Qy at impeller tip, equation (19a)
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JAVa incremental height of fluid strip on surface of revolution

Aw incremental flow rate between two blades on surface of revolu-
tion

LB angular width of passage between blades, radians unless other-
wise specified, equation (3)

2] cylindrical coordinate, radians unless otherwise specified,
(positive about Z-axis according to right-hand rule) (fig. 3)

A whirl ratio, equation (9)

n slip factor, equation (22)

o static (stream) weight density of fluid

) flow coefficient, equation (19)

@ angular velocity of impeller (in direction of positive ‘6)

Subscripts:

abs component of absolute velocity along blade surface

av average

d driving face of blade (blade surface in direction of rotation)
(fig. 4)

M component along meridional line on surface of revolution

o) absolute stagnation condition upstream of impeller

R,8,Z components in positive R-, 6-, Z-directions, respectively

T impeller tip

t trailing face of blade (blade surface opposed to direction of
rotation) (fig. 4)

0) upstream of impeller

b4 position along meridionsl line on surface of revolution at which

the assumption of perfect guiding of fluid by blades is con-
sidered to break down
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Direction of rotation

Figure 1. - Passage between blades in impeller of typical centrifugal compressor.
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erences 1 and 7) and by approximate method.

1.0
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Approximate method
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(a) Example (a): flow coefficlent @, 0.5; impeller-tip Mach number Mp, 1.5; constant flow
area (HR = 1.0); angular width of passage A8, 12°; blade angle B, O;
compressible flow (y = 1.4).
Figure 7. - Varlatlon in velocity along blade surfaces as obtained by relaxation methods (ref-
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(b) Example (b):

Flgure 7. - Continued.

.75 .80 .85 .90 .95 1.0
R

flow coefficient @, 0.7; other parameters same as example (a).

Variation in velocity along blade surfaces as obtained by relaxation

methods (references 1 and 7) and by approximate method,
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(c) Example (c): flow coefficlent @, 0.9; other parameters same as example (a).

Flgure 7. - Continued. Varlation in velocity along blade surfaces as obtalned by relaxation
methods (references 1 and 7) and by approximate method.
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(d) Example (d): 1impeller-tip Mach number My, 2.0; other parameters same as example (a).

Figure 7. - Continued. Variation in velocity along blade surfaces as obtailned by relaxation
methods (references 1 and 7) and by approxlmate method.
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O~————Relaxatlon solution
Approximate method
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(e) Example (e): angular width of passage A9, 18°; other parameters same as example (a).

Figure 7. - Continued. Variation in velocity along blade surfaces as obtalned by relaxatlon
methods (references 1 and 7) and by approximate method.
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(f) Example (f): blade angle B, tan~1(-0.5); other parameters same as example (e).

Figure 7. - Continued. Variation in veloclty along blade surfaces as obtalned by relaxa-
tion methods (references 1 and 7) and by approximate method.
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(g) Example (g): biade angle B, tan~1(-1.0); other parameters same as example (e).

Figure 7. - Continued. Variation 1in veloclty along blade surfaces as obtailned by relaxa-
tion methods (references 1 and 7) and by approximate method.
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(h) Example (h): 1incompressible flow; other parameters same as example (e). Note that
for incompressible flow stagnation speed of sound ¢, contained in definitions of Q, My,

and ¢ is a fictitlous quantity which, if considered equal to c, of example (e), enables

comparison of compressible (example (e)) and incompressible (example(h)) solutions for
same impeller-tip speed, weight-flow rate, and so forth.

Figure 7. - Concluded. Varilation In velocity along blade surfaces as obtalned by relaxation
methods (references 1 and 7) and by approximate method.
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